

Series 131.4 ... G

General description:

PARKER series 131.4...G solenoid valves are direct operated and are used for general applications with fuel gases.

Series 131.4...G valves are normally closed.

Coils:

For series 131.4...G valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (type KT).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and +10% -5% in D.C.

The "K" coil can be used on a.c. with a frequency of 50 Hz (single frequency) and has Faston terminals for DIN 43650A connector with protection to IP65.

Temperatures:

The working temperature for media is: maximum +90°C minimum -10°C

The maximum ambient temperature is: +60 °C

Materials:	
Valve body:	OT58 UNI 5705 brass stamping
Seals:	NBR (Buna N)
 Enclosing tube; 	OT58 UNI 5705 brass stamping
Plunger:	9 SMnPb 23 UNI 5105 steel with nicke
Spring:	AISI 302 stainless steel
 Shading ring: 	Copper

Coil	type]	Por [v	Insulat. class	
A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
KT 09	KT 10	9	10	F
KT 05	KT 05	5	5	F
10	KT 06	2	6	F

Valve type passage	Flow rate factor Kv		Max. differential pressure (M.O.P.D.)		Coil type	Weight	Notes	
	[m³/h]		in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]	
131.4 C	4	0.318	0	2	1	K	0.20	1 - 2
131.4 G	4	0.318	0	2	1	К	0.22	1 - 2
	[]	Valve type passage Ø [mm] 131.4 C 4	Valve type passage Flow rate factor Kv [] [mm] [m³/h] 131.4 C 4 0.318	Valve type passage Flow rate factor Kv Minimum pressure [] [mm] [m³/h] [bar] 131.4 C 4 0.318 0	Valve type passage Flow rate factor Kv Minimum pressure pres (M.O. [] [mm] [m³/h] [bar] in A.C.(~) [bar] 131.4 C 4 0.318 0 2	Valve type passage Flow rate factor Kv Minimum pressure pressure (M.O.P.D.) [] [mm] [m³/h] [bar] in A.C.(~) in D.C.(=) [bar] [bar] [bar] [bar] [bar]	Valve type passage Flow rate factor Kv Minimum pressure pressure (M.O.P.D.) Coil type [] [mm] [m³/h] [bar] in A.C.(~) in D.C.(=) [bar] [] 131.4 C 4 0.318 0 2 1 K	Valve type passage Flow rate factor Kv Minimum pressure pressure Coil type Weight [] [mm] [m³/h] [bar] in A.C.(~) [bar] in D.C.(=) [bar] [] [Kg] 131.4 C 4 0.318 0 2 1 K 0.20

Note: 1) NP (nominal pressure): 10 bar.

2) With coil KT05-KT06 (d.c.) the working pressure is reduced to 0.2 bar.

Application:

Series 131.4...G solenoid valves are ideal for automatic and safe control of fuel gases where low flow rates are required. Some typical application examples:

- · Portable hot air generators;
- · Dryers;
- · Gas cookers:
- · Boilers for caravans and motorhomes;
- · Pilot flame control.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The valve body has 2 attachment holes with

diam. M4 x 7 and centre distance 13 x 13.

Series 131.4 ... G

N.C.

Normally Closed

Coil energised - open

Coil de-energised - closed

Approvals:

· Coil certification:

KT 09 220-230V/50Hz

•EN 161 For the solenoid valves with the

following coil: KT 09 24V/50Hz,

115V/50Hz.

110-120V/60Hz,

220-240V/50Hz

KT 05 12V C.C.

KT 06 196-216V C.C.

129